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when this is the case. This is a generalization of the well-known result that
{X} = {1} 0 (X) vanishes if (X) contains more than two nonzero parts. Thus,
since the representation {X1, X2} of the 2-dimensional unimodular unitary group
equals {X1 - A2}, the analysis of {l}k is of the form {k} + clI{k - 2} + C2{k -

4} + . . ., where cl = k - 1 is the dimension of the representation (k - 1, 1) of the
symmetric group on k symbols, C2 = k(k - 3)/2 is the dimension of the representa-
tion (k - 2, 2) of this symmetric group, and so on. We do not list { m} 0 (X) when
the number p of nonzero parts of (X) is m + 1, for this is the same as {m} 0 (X')
where (X') = (X1- Xm+1, X2 - Xm+l ... X Xm - Xm+i) is the partition, with less than
m + 1 nonzero parts, of k - (m + l)Xm+i. For example, {2} 0 13 = {2} 0 0 =
{O}; {2} 0 321 = {2} 0 21; {3} 0 313 = {3} 0 2 = {6} + {2}; and so on.
We conclude with the remark that the relation {m} 0 lk = {m - k + 1 } 0 k,
together with the relation {m} 0 lk = {m} 0 1m,-k+l (which is an immediate con-
sequence of the fact that {m} is of dimension m + 1), imply the relation {m} 0
k = {kI 0 m, which is known as Hermite's Law of Reciprocity. We have given
previously' another proof, based on the relation ({m - I 0 k) { -1 = ({m}
k - 1){m - 1}, of this law.

I have to thank Professor E. P. Wigner for calling to my attention the importance
in spectroscopy of the problem here discussed.

1 F. D. Murnaghan, these PROCEEDINGS, 37, 439-441, 1951; Anais. Acad. Braoil.,,ci., 23, 347-
368, 1951.
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Introduction.-Von Sterneck1 in 1902 employed the number

(D~k,n) n )
4¢(k, n) - wo(n/(k, n)) (k, n)' (1)

where w(n) is the Euler indicator (or totient) and ,u(n) is the Mobius number. Also,
(k, n) is the greatest common divisor of k and n; k and n integers with k > 0, n > 0
and where (0, n) = n. (Further, unless otherwise stated, all small italic letters
used will denote nonnegative rational integers.) He encountered (1) in investi-
gating the number of different ways an integer s may be expressed as the sum of t
integers if all the summands involved are reduced to their least residues modulo
m > 1. He proved that

din 0(Xd)h otherwise.(a
He derived2 also the relation, if din,

n ikd)f={o d 1
A;=1 0 otherwise, (b
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and noted the multiplicative property

4f(k, m)l'(k, n) = b(k, mn); (m, n) = 1.

[Note that (1) reduces to sp(n) when (k, n) = n and to ,i(n) when kk, n) = 1.] In
the opinion of the authors, (1) will be very much employed by number theorists in
the future and will eventually become classic in the literature of number theory;
hence it will be convenient to give it a name. We shall call it the "Von Sterneck
number."'

In 1920 Ramanujan4 considered the number

Cn (k) = Ei akr. a = e2it/n (2)
(r, n) = 1

(Throughout this paper, a will have this meaning.) Such exponential expressions
are called Ramanujan sums. He showed that

Cn(k) = E ,u(n/d)d. (3)
djk, din

He also employed Cn(k) in certain infinite series.
In 1936 H6lder5 obtained the followingfundamental result:

Cn(k) = 4'(k, n). (4)

He gave two proofs of (4) and indicated another. He also obtained results con-
cerning infinite series involving Cn (k).

Nicol6 obtained a number of relations involving (1). In particular he related
4(k, n) to the theory of the restricted partitions of the natural numbers which have
the two generating functions

n
II (1 va-X). (5)

8 = 1

Apostol and Anderson7 defined a number which is a generalization of (1) and
treated infinite series involving it. It is possible that some of the theorems of the
present paper concerning (1) may be extended to the generalized number, but we
have not yet examined this possibility.

Gagliardo8 gave another proof of Holder's theorem.
In the present paper we obtain a number of properties of (1) which involve the

¢'s only, or the -Vs and roots of unity, the proofs all depending on the use of (4),
excepting Theorem VIII. We then follow with an application of the same methods
to a problem involving the partition of integers with respect to a modulus (Theorem
VII).

This article is introductory to another article which we hope to publish in which
arithmetical and analytic methods are applied to obtaining properties of the co-
efficients of (5) involving, usually, the Von Sterneck numbers.

Properties of the 4D-Function.-We shall have need in several places in this article
,of a result which we shall state as Lemma 1.
LEMMA 1. If din, c = (o(n) and

r1, r2, . . ., rC (6)

are the positive integers less than n and prime to n, then the number of the integers in
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the set (6) which are congruent to t modulo (n/d), -with (t, n/d) = 1, is (d/b)p(b), where
b is the greatest divisor ofd such that (b, n/d) = 1.

Consider the set

t + jd' (6a)

where j = 0, 1,... , d - 1. The integers (6a) are prime to n/d but not necessarily
prime to n. We shall select those which also have the latter property. Suppose
that b > 1, where b is defined in the lemma. The d integers 0, 1, ... , d-1 may be
written as

m + hb, (7)

where m = 0,1,. . .,b- land h = 0, 1, ..., (d/b) -1. If we use these values
of j in (6a) and reduce the resulting expressions modulo b, we obtain the set of
residues

t + dm (7a)
d

corresponding to each value of h. Since (b, n/d) = 1, this set modulo b reduces to a
cyclic permutation of 0, 1, .. . , b - 1. By definition, d = d1b, where each prime
factor of di divides n/d. To obtain the integers in (6a) which are prime to d and con-
sequently prime to n, it is sufficient to select those which-are prime to b, since they
all prime to n/d and hence to di. This subset of (6a) reduces modulo b to the
jp(b) integers in the set 0, 1, . . . , b - 1 which are prime to b. Now there are dib
values of b corresponding to each set (7a). Hence the number of integers prime
to n is (dib) P(b), as stated in the lemma. If b = 1, each prime factor of d occurs
in n/d, so that each element in (6) is prime to n. There are (d/l)je(l) or d such
numbers, and the lemma also follows for this case.
As one application of this lemma, we shall give another' proof of Holder's theorem.

Suppose that a, r, and n are positive integers, and let

S = E aar, where a=e22/n
(r, n) = 1

Also, let (a, n) = d and kd = .a, so that (k, n/d) = 1. Denote the positive integers
less than n and relatively prime to n by

r1, r2, . .. , re, where c = s(n),
and the positive integers less than n/d and relatively prime to n/d by

4, t2,.. . ., t, where v = d

Then the exponents appearing in S are

kdri, kdr2, . .. , kdr.. (8)

Consider the set
n

ti + (9)
d (9)
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where i = 1,2,..., v and j = O 1, ...., d -1. We then employ Lemma 1 and
note that the number of integers prime to n for each t in (9) is the same. Alto-
gether, there are p (n) positive integers less than n and prime to n. Consequently,
(8) may be replaced by kdl, kdt2, ... kdtt, repeated (p(n)/.p(n/d) times. We shall
assume the well-known relations

Ad Ofr=ptn
(9a)

(r, n/d) 1

Since (k, n/d) = 1, we have

E, akdr = p (10)
(r, n/d) =1 d

Also, we note,

ara= E (ad)*ra1d.
(r, n) = 1 (r, n) = 1

Then, from (10) and (11) and noting the remark just above (9a), we have

__(__ kdr _ p(n)(p'n
jp(n/d) (r, n/d) = 1 (n/d) d

which proves (4).
We shall now prove (la). (Von Sterneck's proof was more complicated.) Sup-

pose d divides n and n > 0. Consider the set of positive integers less than
n + 1 whose greatest common divisor with n is d. These may be written as dal,
da2, . .. , dan, where v- c'p(n/d) and a1, a2,. .. . , a, are the (p(n/d) integers less than
n/d and prime to n/d. Then we have, by (4).

A'(k, d) =2E a (n/d)rk,
din din (r, d) = 1

since an/d is a dth root of unity. In the last relation, as d ranges over each divisor
of n, we obtain the kth powers of all nth roots of unity, so that we may write

2,(k ) + ak + at2k + ** 1off k

din d k~~k 2

and this sum is zero unless a' = 1, in which case it is n, which gives (la).
If p is a prime such that p = 1 + tn, then the decomposition of (p) into prime

ideal factors shows that one of them is (gt - 1, p), where g is a primitive root of p.
Hence a - g'(mod p), and, from (4), we have

Ad git~ _cI44(k, n) (mod p),
(r, n) = 1

or

E rgik = 4(k, n) (mod p). (12)
(r, n) = 1

This proves a result due to Moller.'1
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Suppose k > 0, and consider the number
n

E Z 4(k, s).
8 1 dl8

From relation (la) we note that the inner sum is zero unless (k, s) = s when it is
s. Thus this number is the sum of the divisors of k less than or equal to n, which
we shall denote by u(k, n).
However, we also have

¾E(jk, s)= E [ b(k 8),
8 = 1 dis 8g = 1 S

where [n/s] is the largest integer in n/s. Therefore, we may state.
THEOREM I. We have the relation (Paper N, [9];. note also the two equations

following it)

E [-i(ky s) = cr(k, n), (13)
8=1 8

where k > 0 and a(k, n) is the sum of the divisors of k less than or equal to n.
Consider the number

(n/d) - 1

E a-sdi(dt, n).
t = 0

Using the Holder theorem, we have

(n/d) - 1 (n/d) - 1
E a sdi D(dt, n) = EaZsd ard

t =_ t =O (r, n) =1

which may be written as

E (1 + ad(r-s) + a2d(r-s) + + a((n/d)-1) (r-s)).
(r, n) = 1

The sum of the terms in the parenthesis is zero unless a(r-S) = 1, in which case it
is n/d. Since a is a primitive nth root of unity, a(r-s) = 1 only if r = s mod (n/d)
and the number of nonzero terms in the sum taken over the positive integers less
than n and prime to n reduces to the number of positive integers less than n and
prime to it which are congruent to s modulo (n/d), multiplied by n/d. If (s, n/d) $
1, then no r exists. If (s, n/d) = 1, then, by Lemma 1, the number of integers less
than n and prime to n which are congruent to s modulo (n/d) is (d/b)jr(b), where b
is the largest divisor of d such that (b, n/d) = 1. This gives
THEOREM II. If n >O and d n, then

a-tds4i(dt, n) - (n/b)(o(b) if (s, n/d) = 1; (14)= a dtn)-0otherwise,(4
where a = e2Tri/n and b is the largest divisor of d such that (b, n/d) = 1.

Suppose that p is a prime and g is a primitive root modulo p. Then we shall
show that, modulo p,
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P () ts {-1 if(..i -1) = 1, (15)Ei I(t, p - 1)gs=s= 1) 1
t=1~ ~~ 0 otherwise. (16)

In relation (14), if we choose d = 1, then b = 1. Also select n = p - 1, where p is
an odd prime with (s, p - 1) = 1. Then (14) becomes

p-i

E ats i(t, p-1) p-1. (17)
t = 1

If p is a prime ideal divisor of (p), then we may write a g (mod p) for g a primi-
tive root of p. Then (17) becomes

p-i

A gSSb(t, p - 1) -1 (mod p)
t=1

or
=_-1 (mod p), where (s, p - 1) = 1,

which is relation (15). In a similar way, relation (14), for (s, p - 1) P6 1, becomes
relation (16). Relations (15) and (16) may be combined to give the following re-
sults:
The ohly integral roots x of the congruence'

p-i

E xt I(t, p - 1) -1 (mod p). (18)
t = 1

are the p (p - 1) incongruent primitive roots of p, and the only integral roots y of
the congruence

p-i

E ytt(tl p -1) = 0 (mod p) (19)
t = 1

are the integers in the set 0, 1, .. , p - 1 which are not primitive roots of-p.
THEOREM III. Ifn > 1, then

E s4?(sn) = n-o(n) (20)
8=12

Proof: From (4) we have
n n

Zs4(8 n) = d =
s (a'+ 2a2t+...+ naT). (20a)

8 = = 1 (r,n) (r,n)i
As is well known, however,

ar+ 2a2+ + na=n( +1).

Consider now the function

F&(x) = II (x - dT).
(r, n) = 1

Differentiating and letting x = 1, we have

F'(1) - E 1 (20b)
Fn(1) (r, n) = (ar
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Holder12 has shown that Fn'(l) is equal to (1/2)so(n) when n > 1 and not a power of
a prime, and F.'(1) is equal to pk(p _ 1) when n = pk.
Also, as is well known,

= 1 if n contains two prime factors,F() p otherwise.

Therefore, we have, from (20a) and (20b),
n ~~~~n~p(n)E S((s=,n) + nsp(n),
8=1 ~~~2

which establishes the theorem.
If n > 0 and 21 n, consider the expression

S =1 +a2 +a4 +. ++ (n-2)k. (21)

Since a2 is a (n/2)th root of unity, it follows that the above may be written, using
(4), as

d t,2 k (22)

Now consider

d )dn(b d) (23)

This may be written as S - akS, using (21), since

ak + a3 +k + a(n-1)k akS. (24)

We also have, from (21), that S = 0, except when k = n/2, when it is n/2. Then
S - a'S reduces to 0, except when k = n/2, when it reduces to n, and we have6
Theorem IV.
THEOREM IV. If n is even and n and k are positive, then

E (_ed b(Dk-)~= {nifk = n/2,
din d~~ ~0 otherwise.

Let Wc = te2/(n/d) and din and d < n. Then, by (4),

A, has,-) = a, a, co = d E co
8 = 1 d (r,n/d) = 1 8 = 1 =

after we set s = k(n/d) + s', with 0 < k < d and 0 < s' < n/d. Hence the second
n

factor on the right is zero. When d = n, the sum E 1(s, 1) -n. This gives

(lb). Von Sterneck's proof was more complicated.
Consider the cyclotomic function

G(x)= II (x-aD (25)
(r, n) = 1

and the problem of finding a convenient way of determining its coefficients when
written in polynomial form. First, the coefficients are, in absolute value, the ele-
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mentary symmetric functions which are formed by the distinct po(n) primitive roots
of unity. In view of (4), the sums of like powers of these roots are all known in
terms of the Von Sterneck numbers.

Suppose G(x) = xc + pixc-1 + ... + Pc and si = Ej ai =b (i, n), where i =
(r, n) = 1

1, 2, ... , C; c = So(n). Consider the Newton formulas as applied to G(x).

sl + pisi-I + ...+ pi-Is, + ipj = 0 for i =1...,c.

Let us assume that Pa (a < c) has the property that it can be expressed as a poly-
nomial in the Von Sterneck numbers with rational coefficients. Using the relation

sa+l + pisa + . . . + (a + l)Pa+i = O0

it follows immediately by induction that Pa+i has the same property. Since this is
obvious for pi, it then follows that each of the coefficients in the cyclotomic polynomial
(25) may be expressed as a polynomial in the Von Sterneck, numbers with rational
coefficients.
We shall now consider two inversion formulas.
THEOREM V. If gn(s) = E f(d)4(s, n/d), where f(n) is an arithmetic function,

din
then

in
f(n) = - j X(8).n.

Proof: From the hypothesis we have

Eq.(s)= E Ef(d) ) = Z f(d) E(s,-).
8 = 8= 1 din d d n 8 I d

From relation (lb) the only term in the right-hand member which is not zero occurs
when d = n, and thus the theorem follows.

n
THEOREM VI. If g"(d) = Ej f(k) c1(k, d), where f(k) is an arithmetic function, then

k = l

f(n) = - E g9(d).n din

The proof of this theorem is the same as in Theorem V, except that relation (la) is
used.

Restricted Partitions Modulo n.-Consider the expression
n-i

EaO-Stim Q, n),
t =0

where m is a positive integer and a is a primitive nth root of unity. Then, from
(4), we have
n-1 n-1
E i a scIt(t, n) = -stA atXl. atxm =

t = 0 t 0O (Xi, n) = 1 (xm, n) = 1

E * * * E (1+ a~y + ..+ a"1
(Xi, n) =1 (xm, n) = 1

832 PROC. N. A. S.
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where y = (xl + X2+... + xm- s). The sum 1 + ac+ ...+a(U-1)Yiszero
unless y 0 (mod n) orxl + . . . + xm s (mod n), in which case it is n. Then, if
Pm(m, s) is the number of solutions of the congruence xi + . . . + X,= s (mod n),
in which the order of the terms is taken account of and (xi, n) = 1, i = 1, 2,... m,
we have

n-i
Z aC'4'tD'(t, n) = nP,(m, s). (26)

t = 0

Suppose that d is a positive integer which divides n, and let Sd be the set of positive
integers less than n + 1 whose greatest common divisor with n is d. Then we may
write

E a-stcm(t n) = i E asd~bm(d, n),
t = 0 din Sd

where the inner sum is taken over the set Sd. However, for a positive integer D
in the set Sd, the number 4F(D, n) remains constant, and we may write

asm(t n) = Aj c^(d n) Ej asd
t = din Sd

However, from (4), the inner sum may be replaced by cI(s, n/d). Therefore we
have Theorem VIII.
THEOREM VII.

£ m(d, n) CD) d = nPn(m, s). (27)

where P,(m, s) is the number of solutions of the congruence xi + x2 + * + Xm
s (mod n), two solutions (X1, X2, . ... X.) and (X1', X2', . ,Xm') being regarded as the
same if and only if xi xi' (mod n), where (xi, n) = 1for i = 1, 2,.. ,m and
m>0, n> 1.

For small values of m, at least, the right-hand member of (27) may be evaluated
independently of the use of the cu-number. For m = 1 in relation (26) we have a
special case of Theorem II, when d = 1 in the latter statement. Form = 2 and 8 =
0 we determine explicitly the value of P^(m, s) as jo(n). This' gives (26) for
m = 2, s = 0. If we takem = 3,)s = 0, then we have to find thexi's with (xi, n) =
1, i = 1, 2, 3, such that x1 + X2 + x3 =- (mod n), which is equivalent to xi' +
x2' + 1 = 0 (mod n), (x1', n) = 1 and (X2', n) = 1, so we have the problem of finding
the number of sets of consecutive positive integers < n and prime to n.
Schemmel" stated that n IH (1 - (2/p)) is the number of pairs of consecutive

p
positive integers less than n which are each prime to n. This is equivalent to the
number of positive integers less than n which are relatively prime to n and less than
n and which remain prime to n when unity is added to each of them. In this con-
nection we have Theorem VIII.
THEOREM VIII. Ifn is an integer greater than one, then
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Z"n¢(d, n) = nI (1 - ),
din

where the product is taken over all prime divisors of n.
Proof: From relation (1), we have

E b(d, n) = o(n) E ii(n/(d, n))
din din (p(n/(d, n))

Since d n, then (d, n) = d, and thus

A,4i(d, n) = (n) E(d)
din din p(d)'

Since ,u(d) and (o(d) are multiplicative, then the number E 4'(d, n) is also multi-
din

plicative. Hence it is sufficient to consider n = pa where p is a prime and a is a posi-
tive integer. Then

dEG i(d, pa) = (pa)(1 - 1) = pa(1 9)

which proves the theorem.
Von Sterneck'4 found an expression involving (1) for the number of representa-

tions of s as the residue modulo n of a sum of m elements chosen from 0, 1, ...
n - 1, repetitions allowed but with order of the summands disregarded.

'Whiteman15 determined the number of sets of integers ul, U2, . , us; 1 < ui <
I-1 for which al" ... ash = 1, where aj = e2Ti/mi;j = 1, 2, . . . , s. If mis the

L.C.M. of these mj's, this is the same as finding the number of representations
xl, x2,. .., 2X in mix, + m.2x2 + . .. + msx, = 0 (mod m). This is equivalent to the
problem14 previously discussed, except that our representations are restricted to
certain types of repetitions.

1 Sitzber. Akad. Wiss. Wien, Math.-Naturw. KMasse, 111 (Abt. Ma), 1567-1601, 1902. Cf.
also Bachmann, Niedere Zahlentheorie (Leipzig: B. G. Teubner, 1909), 2, 230-232.

2 Bachmann, op. cit., p. 232.
3 We hope that other mathematicians wil check our conclusion that Von Sterneck was the

first investigator to isolate this number and obtain a few of its properties.
4 Trans. Cambridge Phil. Soc., 22, 259-276, 1918; Collected Papers, pp. 179-199. To some ex-

tent these sums had been considered before; cf. Hardy and Wright, The Theory of Numbers (Oxford,
1938), p. 62.

6 Prace Mat.-Fiz., 43, 13-23, 1936.
6 These PROCEEDINGS, 39, 963-968, 1953. This paper will be referred to as "Paper N." The

present article is the result of joint work of Nicol and Vandiver, except as follows: Theorem I is
due to Nicol (Paper N, [9]), who found a proof less direct than the one given here. He discovered
Theorem IV and found a different proof. He obtained (26) for m = 2, s = 0 and obtained an-
other type of proof for that case. The same remark applies to (18). All the results ascribed to
Nicol were stated by him without proof in the reference given at the beginning of this footnote.

7 D. R. Anderson and T. M. Apostol, Duke Math. J., 20, 211-216, 1953.
8 E. Gagliardo, Boll. Un. mat. Ital., (ser. 3), 8, 269-273, 1953.
9 Holder gave two proofs of (4) and indicated another, and in addition we have another proof,

as noted, by Gagliardo. If the reader desires to examine a proof of (4), our proof may be a con-
venience, as the articles of Holder and Gagliardo were published in journals which are not readily
accessible, at least in the United States.
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10 Cf. E. Landau, Handbuck der Lehre von der Verteilung der Primzahlen, 2, 572-573, 1909.
11 Am. Math. Monthly, 59, 228, 1953.
12 op. cit., p. 15.
13 J. f. Math., 70, 191-192, 1869. This and other of Schemmel's results were proved by Bach-

mann, NiedereZahentheorie (Leipzig: B. G. Teubner, 1902), 1, 91-94.
14 Sitzber. Akad. Wiss. Wien, Math.-naturev. Kasse, 114 (Abt. Ha), 711-730, 1905.
16 Trans. Am. Math. Soc., 74, 87, relation (4.11), 1953.

SPHERICAL SPINORS IN A EUCLIDEAN 4-SPACE

BY A. PAIS
INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY

Communicated by J. Robert Oppenheimer, June 29, 1954

1. In a foregoing paper' some qualitative properties of baryons (nucleons and
hyperons) in interaction with bosons were discussed in terms of a model in which
these particles are characterized by quantum numbers corresponding to certain
representations of the group of real 4-dimensional rotations with det. = + 1. It is
the purpose of this note to append these considerations by explicitly constructing
the spinors which, in this model, describe the baryon states. This is a simple
matter, and it is hoped that it may elucidate the group theoretical argument given
previously.

It was important for the previous discussion' of charge-independence to note the
connection between 3- and 4-dimensional rotations. This connection has long been
known. In physical terms it is exhibited by the classical result2 that the motion of
a (3-dimensional) spherical top can be represented by the motion of a 4-dimen-
sional spherical pendulum, i.e., a point moving over a 3-sphere in 4-space. Thus
quantum-mechanically spherical top eigenfunctions can be written, in terms of
appropriately chosen variables, as eigenfunctions of a particle with intrinsic spin
zero constrained to a 3-sphere, i.e., as 4-dimensional spherical harmonics.3 (Not
all harmonics come into play, however; see the end of sec. 2.) Our present problem
consists in constructing the eigenfunctions (spherical spinors) for a spin-'/2 particle
subject to the same constraint.

In Section 2 the 4-dimensional spherical harmonics are expressed in a form some-
what different than usual,4 so as to bring in evidence formal connections with the
Legendre polynomials." Recursion relations are obtained which closely resemble
those holding for associated Legendre functions and by means of which it is easy to
find the spherical spinors (sec. 3). Some features of the spinors in Euclidean 4-space
have been studied by Schrbdinger in a little-known paper on the Dirac equation in
a closed spherical universe. The procedure followed here is a different and rather
simpler one.
Thus the main interest of this note is one of method. The results may perhaps

be of use for field theoretical calculations, such as, for example, the relativistic two-
body problem.

2. In a Euclidean 4-space (variables xi, ..., x4) we introduce the "angular mo-
mentum" operator

VOL. 40, 1954 835


